
Inlining
bright victories and hidden defeats

Me

● Backend developer @ TradingView
● Go developer since 2012
● Community member since 2015
● Meet-up organizer since 2018
● Conference speaker since 2019 :)

Inline expansion

Inlining is

● Embedding function code inside the body of the caller
● Compiler optimization

○ Can be done manually

● First research papers around 1980s
● Present in all major compilers for C/C++/Java/C#/etc
● Budget based, profiled-guided and so on...

Good

● Eliminating call overhead
○ for Go up to 4-7 nanoseconds on modern CPU’s

● Preserves stack and registers
○ no need to pass arguments by stack

● Good instruction cache locality (locality of reference)
● Works well with optimizations like escape analysis

Bad

● Bigger binaries
○ From 7% to 50% and even bigger

● Cache misses
○ Big functions do not fit in CPU cache

● Mysterios interactions with GC and a runtime

A rule of thumb:
Some inlining will improve
speed at very minor cost of
space, but excess inlining will
hurt speed and cost space.

Inlining in Go compiler

History

● Basic inlining since Go 1.0
○ Some basic tests in https://golang.org/test/inline.go

● Implementation is quite simple
○ Most of it in cmd/compile/internal/gc/inl.go

● Mid-stack inlining since Go 1.12

https://golang.org/test/inline.go

Can inline

● Functions with
○ basic operations
○ goto’s (but not for’s)
○ intristics
○ appends
○ map access
○ panic’s

● Closures
● Non-leaf functions/methods (since Go 1.12)

Can’t inline (for now)

● Functions with
○ for’s
○ defer’s
○ select
○ closures
○ type switch
○ go
○ type declarations

Will never inline (probably)

● Functions with
○ recover (need a frame pointer)
○ no body

● Funtime.getcaller
● Functions implemented in assembly
● Functions marked with “go:noinline” and so on...

How it works

How it works

● Simple cost-based model
● Every function has a

○ Budget
○ Cost

● Budget defines how much can be inlined inside current function
● Cost defines if the current function can be inlined (and how much it will

cost)

How it works

func fn1:

call fn2

func fn2:
 ---(1)
 ---(1)

call fn3(3)
 ---(1)

call fn4(99)
 ---(1)

func fn3:(C=3)
--- (1)
--- (1)
--- (1)

func fn4:(C=99)
--- (1)
for (97)
--- (1)

Budget = 80, C - Cost, Can inline, Can’t inline

Possible improvements:

● Inline for-loops
○ https://github.com/golang/go/issues/14768

● Inline defer
○ https://github.com/golang/go/issues/14939

● Improve inlining cost model
○ https://github.com/golang/go/issues/17566

https://github.com/golang/go/issues/14768
https://github.com/golang/go/issues/14939
https://github.com/golang/go/issues/17566

Quiz time!

Will this exit?

package main

import (
"runtime"
"sync/atomic"

)

var (
variable uint64

)

func main() {
runtime.GOMAXPROCS(1)
go func() {

for {
atomic.AddUint64(&variable, 1)

}
}()
runtime.Gosched()

}

Will this exit?

package main

import (
"runtime"
"sync/atomic"

)

var (
variable uint64

)

func main() {
runtime.GOMAXPROCS(1)
go func() {

for {
atomic.AddUint64(&variable, 1)

}
}()
runtime.Gosched()

}

Answer: No
Program exited: process
took too long.

Will this exit?

package main

import (
"runtime"
"sync"

)

var (
mx sync.Mutex
variable uint64

)

func main() {
runtime.GOMAXPROCS(1)
go func() {

for {
mx.Lock()
variable++
mx.Unlock()

}
}()
runtime.Gosched()

}

Will this exit?

package main

import (
"runtime"
"sync"

)

var (
mx sync.Mutex
variable uint64

)

func main() {
runtime.GOMAXPROCS(1)
go func() {

for {
mx.Lock()
variable++
mx.Unlock()

}
}()
runtime.Gosched()

}

Answer: No
Program exited: process
took too long.

But why?

Safe-points!

Safe-points

● Currently (as Go 1.13) runtime can only stop goroutine’s at safe-points
● Safe points are placed through the resulting code by the compiler

○ Most of them are located at the function’s prologue

● Runtime can’t continue GC before all goroutines reach safe-points
● It can’t switch them too

Will this exit?

package main

import (
"runtime"
"sync"

)

var (
mx sync.Mutex
variable uint64

)

func main() {
runtime.GOMAXPROCS(1)
go func() {

for {
mx.Lock()
variable++
mx.Unlock()

}
}()
runtime.Gosched()

}

Answer: No (because it’s
a deadlock)

Problems

● Inlining can result in bizarre dead-locks and live-locks
● Can be solved with non-cooperative goroutine preemption

○ https://github.com/golang/go/issues/24543

https://github.com/golang/go/issues/24543

Mid-stack inlining

Mid-stack inlining

● First talks ~ 2016
● Design doc in 2017

○ https://golang.org/design/19348-midstack-inlining

● Enabled behind the flag (-gcflag=-l4) since 2017
● Main problem: stack frames

○ Runtime must know where current code executes
■ For stacktraces/panics/callers

● Fully enabled in Go 1.12

https://golang.org/design/19348-midstack-inlining

How it works (since Go 1.12)

func fn1:

call fn2(57+7)

func fn2:(C=7)
 ---(1)
 ---(1)

call fn3(3)
 ---(1)

call fn4(99)
 ---(1)

func fn3:(C=3)
--- (1)
--- (1)
--- (1)

func fn4:(C=99)
--- (1)
for (97)
--- (1)

Budget = 80, Non-leaf call cost = 57, C - Cost, Can inline, Can’t inline

Will this exit?

package main

import (
"runtime"
"sync"

)

var (
mx sync.Mutex
variable uint64

)

func main() {
runtime.GOMAXPROCS(1)
go func() {

for {
mx.Lock()
variable++
mx.Unlock()

}
}()
runtime.Gosched()

}

Answer: No

mx.Lock/Unlock were
inlined

Optimizations!

Simple code

package main

import "math"

var GlobalArray [65535]int

func ModifyArrayOnIntMax(v uint64) {
if v > math.MaxInt64 {

for i := 0; i < 65535; i++ {
GlobalArray[i]++

}
}

}

Simple code

package main

import "math"

var GlobalArray [65535]int

func ModifyArrayOnIntMax(v uint64) {
if v > math.MaxInt64 {

for i := 0; i < 65535; i++ {
GlobalArray[i]++

}
}

}

BenchmarkModifyArrayOnIntMax-8 692112469
 1.67 ns/op

BenchmarkModifyArrayOnIntMax-8 724745390
 1.64 ns/op

BenchmarkModifyArrayOnIntMax-8 697325808
 1.70 ns/op

BenchmarkModifyArrayOnIntMax-8 710092806
 1.62 ns/op

BenchmarkModifyArrayOnIntMax-8 741783656
 1.62 ns/op

Average ~ 1.60ns

Sample code

package main

import "math"

var GlobalArray [65535]int

func ModifyArrayOnIntMaxV2(v uint64) {
if v <= math.MaxInt64 {

return
}

modifyArrayOnIntMaxV2()
}

func modifyArrayOnIntMaxV2() {
for i := 0; i < 65535; i++ {

GlobalArray[i]++
}

}

Sample code

package main

import "math"

var GlobalArray [65535]int

func ModifyArrayOnIntMaxV2(v uint64) {
if v <= math.MaxInt64 {

return
}

modifyArrayOnIntMaxV2()
}

func modifyArrayOnIntMaxV2() {
for i := 0; i < 65535; i++ {

GlobalArray[i]++
}

}

BenchmarkModifyArrayOnIntMaxV2-8
1000000000 0.270 ns/op
BenchmarkModifyArrayOnIntMaxV2-8
1000000000 0.273 ns/op
BenchmarkModifyArrayOnIntMaxV2-8
1000000000 0.272 ns/op
BenchmarkModifyArrayOnIntMaxV2-8
1000000000 0.269 ns/op
BenchmarkModifyArrayOnIntMaxV2-8
1000000000 0.282 ns/op

Average ~ 0.273ns (x6 speedup!)

Function outlining

Function outlining

● Moving parts of functions into the parent to enable other optimizations.
● For example - compiler can inline the parent function containing hot paths

More
optimizations!

Simple code

package main

func AllocateConstantSlice(v int) []int
{

slc := make([]int, 1024)
for i := range slc {

slc[i] = v
}

return slc
}

Simple code

package main

func AllocateConstantSliceV2(v int) []int {
slc := make([]int, 1024)
allocateConstantSliceV2(v, slc)
return slc

}

func allocateConstantSliceV2(v int, slc []int) {
for i := range slc {

slc[i] = v
}

}

BenchmarkAllocateConstantSliceV2-8
2864816
413 ns/op
0 B/op
0 allocs/op

Credits to:
Filippo Valsorda(@FiloSottile)

Takeaways

● Compiler is your friend
● Use your compiler
● Know your compiler
● Improve your compiler
● Make your compiler 😎

THANK YOU!

